A Full Power Emulation Platform for Evaluating Power Semiconductors

$i_L(t) = $	$\frac{\partial C}{\partial t} \cdot \frac{duty}{2 \cdot freq} + \frac{V_{DC}}{L_1} \cdot t if \ 0 \le t \le \frac{duty}{freq}$	$\left\{ V_{DC} if \ 0 \leq \right.$	
	$\frac{V_{DC}}{L_1} \cdot \frac{duty}{2 \cdot freq} \qquad if \frac{duty}{freq} < t \le \frac{1}{2 \cdot freq}$	$\begin{cases} \frac{1}{2 \cdot freq} \\ if \frac{1}{2 \cdot freq} \le t \le \frac{2 \cdot duty + 1}{2 \cdot freq} \\ t \le \frac{1}{freq} \end{cases} \qquad V_{bridge}(t) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 if $\frac{d}{dt}$
	$\frac{V_{DC}}{L_1} \cdot \frac{duty}{2 \cdot freq} - \frac{V_{DC}}{L_1} \cdot (t - \frac{1}{2 \cdot freq}) if \frac{1}{2 \cdot freq} \le t \le \frac{2 \cdot duty + 1}{2 \cdot freq}$		$-V_{DC}$ if $\frac{1}{2}$
	$\left(-\frac{V_{DC}}{L_1} \cdot \frac{duty}{2 \cdot freq} if \ \frac{2 \cdot duty + 1}{2 \cdot freq} \le t \le \frac{1}{freq}\right)$		$\begin{bmatrix} 0 & if \ \frac{2 \cdot dut}{2 \cdot ft} \end{bmatrix}$

ZVS transition of a half bridge power stage

Juncheng (Lucas) Lu, Yajie Qiu, and Di Chen GaN Systems Inc.

Device Modeling with Proposed Platform Yokogawa WT1800 Power Meter DC Power Supply Power measured by power meter = Magnetic loss + Transistor Loss + other loss 7kW Inductor DUT: two GaN Half Bridege IMS Modules **Full Power Emulation Platform and Device Under Test**

Conclusion

The operation principles of the full-bridge energy recirculation and storage circuit are explored and extended to evaluate power semiconductors under both soft switching and hard switching conditions. An IMS-based 120 A/ 650 V GaN power module is evaluated by proposed full power emulation platform. A strong correlation has been shown between simulation and experiment results under all test conditions.

