

TRANSFORMING THE WORLD

WITH SMALLER, LOWER COST, MORE EFFICIENT POWER ELECTRONICS

The value of GaN HEMTs in 800V and above applications

GaN Systems University of Alberta

GaN/Si IGBT based Hybrid T-Type Inverter for Automotive Application

GaN/Si IGBT based Hybrid ANPC Inverter for Industrial Applications

Modes	City	High way	Top speed	Accel- erating
% of time	45%	40%	10%	5%
Load	10%	20%	7%	100%

Typical Traction Inverter mission profile

Today's Focus

- On-Board Charger
- DC/DC Converter 2
- Traction Inverter

- 400V inverter
- 800V inverter

GaN is a game changer:

- Switching loss is dominant at partial load even @10kHz
- Increased range and/or lower battery costs
 - Increased Range \rightarrow Fewer lifetime charge cycles
 - Optimized Price/Performance ratio for discussion

Conventional Two level Phase Leg – and Limitations

Two-level phase leg

Phase Current	Initial Vector	Final Vector	Con Loss Distribution	SW Loss Distribution	Conditions
+	Р	Ν	$\rm S_{11}$ and $\rm S_{21}$	$E_{off}(S_{11})$	Inverter(Active)
+	Ν	Р	$\rm S_{11}$ and $\rm S_{21}$	$E_{on}(S_{11})$	Inverter(Active)
-	Р	Ν	$\rm S_{11}$ and $\rm S_{21}$	E _{on} (S ₂₁)	Inverter(reactive), Regeneration
-	Ν	Ρ	$\rm S_{11}$ and $\rm S_{21}$	$E_{off}(S_{21})$	Inverter(reactive), Regeneration

Limitations:

- All the switching transitions happen at higher V_{BUS} voltage
- Silicon Reverse Recovery losses are very high

Under Consideration for higher efficiency:

- SiC MOSFET + SiC Diode to reduce losses
- 1200V GaN not ready for production

Same Topology, better devices?

Proposed Solution: T-type Two/Three-level Phase Leg

Three-level Si/GaN Hybrid phase leg

Solution includes:

- Fully rated IGBT switches (1200V, 100% current)
- No SiC diodes required
- 2 Additional GaN E-HEMTs rated at
 - 1/3 full load current
 - 1/2 Bus voltage (650V)
- Neutral point clamped battery solution
 - Hard wired simplest, control algorithm possible

Improvements in Efficiency come from 3L operation:

- Vbus/2 Switching Transitions (as compared to Vbus)
- Inverter Mode: IGBT hard-switching → no Qrr in GaN
- Regen Mode: GaN hard-switching → very low Eon/Eoff

Proven Topology, BEST devices for the job

Operating Principles

Operation Rule of The T-type Three-level Phase Leg

	Phase Current	Initial Vector	Final Vector	Con Loss Distribution	SW Loss Distribution	Conditions
1200V 1200V	+	Р	0	$\rm S_1$ and $\rm S_2$, $\rm S_3$	$E_{off}(S_1)$	Inverter(Active)
IGBT Diode	+	0	Р	$\rm S_1$ and $\rm S_2$, $\rm S_3$	$E_{on}(S_1)$	Inverter(Active)
	-	Р	0	$\rm S_1$ and $\rm S_2$, $\rm S_3$	E _{on} (S ₂)	Inverter(reactive), Regeneration
┉┐╝	-	0	Ρ	$\rm S_1$ and $\rm S_2$, $\rm S_3$	$E_{off}(S_2)$	Inverter(reactive), Regeneration
	-	N	0	${ m S_4}$ and ${ m S_2}$, ${ m S_3}$	$E_{off}(S_4)$	Inverter(Active)
	-	0	Ν	$\rm S_4$ and $\rm S_2$, $\rm S_3$	$E_{on}(S_4)$	Inverter(Active)
┡╾┓┚	+	Ν	0	$\rm S_4$ and $\rm S_2$, $\rm S_3$	E _{on} (S ₃)	Inverter(reactive), Regeneration
ase leg	+	0	Ν	$\rm S_4$ and $\rm S_2$, $\rm S_3$	E _{off} (S ₃)	Inverter(reactive), Regeneration

Three-level Si/GaN Hybrid phase leg

Fast-Prototype of Si/GaN Hybrid T-type Phase-Leg

Main Switches (S₁, S₂): IKQ50N120CT2

- Infineon, 1200V/50A IGBT with fast recovery anti-paralleled diode
- Intended for Inverter/Vehicle Applications
- To-247 Package

Neutral Clamping Leg (S₂, S₃): GS66516B

- GaN Systems, 650V/25mOhm GaN HEMT
- GaN^{PX} package

Substrate: Insulated Metal Core Substrate(IMS) There are no capacitors/resistors on power board

IMS Power Board

- The mother board is stacked on the top of IMS power board.
- The distance between the mother board and the IMS power board is 6.5mm.

Double Pulse Test

I_{CE} - Rogowski Coil, CWTUM/1/B

Double Pulse Test Waveform @ V_{BUS}=600V, I_{load}=50A

Conditions: IGBTs (R_g=2 Ohm, V_{GE}=15V/-9V), GaN HEMTs (R_g=2Ohm, V_{GS}=6V/-6V)

GaN Systems - 11

Switching Energy Comparison

Gan Systems

Conditions: IGBTs (R_G =2 Ohm, V_{GE} =15V/-9V), GaN HEMTs (R_G =2Ohm, V_{GS} =6V/-6V), T_J = 25°C ; the switching energy of IGBT is derived from datasheet of IKQ50N120CT2 @25°C

The cause of enhancement:

Zero Qrr of GaN HEMTs, halved voltage stress due to three-level configuration
 More aggressive gate driver parameters enabled by zero Qrr of GaN HEMTs
 halved voltage stress, and lower Eoss (only 1/8 of conventional two-level configuration)

Simulation of Operating Rules across mission profile

Phase current(A) Phase voltage(V) 400 200 0 -200 -400 **3-Level** 2-Level Mode Mode 0.066 0.067 0.068 Time (s)

GaN Systems – 13

Systems

Transistor technology comparison for Traction Inverters

Objective:

- Compare Semiconductor solutions for Traction Inverters
- For modeling purposes, use the mission profile shown

Case 1: "800V, 150kW"

- 10kHz inverter
- Input conditions below: Battery Voltage Range: 500V - 870V System Power: 150kW Motor Voltage: 400Vac Phase-Phase
- Compare **3** possible solutions
 - IGBT solution
 - SiC solution
 - T-Type hybrid IGBT + GaN Solution

Modes	City	High way	Top speed	Accel- erating	Regen- eration
% of time	45%	40%	10%	5%	Braking
Load	10%	20%	7%	100%	30%
		Tur	ical Traction	Invortor mice	tion profile

Case 2: "400V, 100kW"

- 10kHz inverter
- Input conditions below: Battery Voltage Range: 220V – 460V System Power: 100kW Motor Voltage: 160Vac Phase-Phase
- Compare 4 possible solutions
 - IGBT solution
 - SiC solution
 - T-Type hybrid IGBT + GaN Solution
 - Gan Solution (here 650V GaN could be used)

Electrical Performance Comparison for ~150 kW Applications Gan Systems

Specs: V_{BUS} =800V, V_{AC} =400VRMS, Rated phase power= 50 kW, I_{PEAK} = ~180A, I_{RMS} =~125A

As the traction inverter is operating at <30% rated current for 90% of the time, this
proposal is aimed at improving the efficiency when the load is low (all operating
modes other than "Top speed"

Solutions to compare: (note commercial modules used for comparison)

- IGBT Infineon's latest 1200V/200A half-bridge IGBT module FF200R12KE4
- SiC Wolfspeed's 1200V/13mOhm SiC module CAS120M12BM2
- Hybrid same IGBT module with GaN 650V/12mOhm GS-065-120-1-D

Modes	City	High way	Top speed	Accel- erating	Regen- eration
% of time	45%	40%	10%	5%	Braking
Load	10%	20%	7%	100%	30%

Switching Loss Comparison

The switching ON energy @V_{BUS}=800V

The switching OFF energy @V_{BUS}=800V

Conditions	Improvement
Active (Switching on)	 The voltage stress across IGBT during switching transition is clamped to V_{BUS}/2 by GaN. No reverse recovery and the Low C_{oss} of GaN significantly reduces current overshoot.
Active (Switching off)	 The voltage stress across IGBT during switching transition is clamped to V_{BUS}/2 by GaN. The low C_{oss} of GaN results in a much higher dv/dt and lower loss despite the tail current of IGBT.
Reactive	• The ultra-fast switching transition of GaN results in a low switching on and off loss.

GaN Systems – 16

Conduction Loss Comparison

- In most of the operating range of less than 30% load, GaN back-to-back switches contributes less conduction loss than IGBTs Extending range/Reducing battery for 90% of the mission profile.
- In Peak mode, GaN back-to-back switches are disabled and contribute no loss.

Efficiency Analysis (50kW/phase, 800V/400VAC, 10kHz)

Modes	City	Highway	Top speed	Accelera -ting	Regenera -tion
Percentage of time	45%	40%	10%	5%	Braking
Load	10%	20%	7%	100%	30%

 Weighted average of energy consumption (power loss) across discharge/regen cycle

Device Type	Weighted average loss of Leg (w)	Improvement over IGBT	Current Rating /Relative Cost
IGBT	125	-	100% IGBT
SiC	40	67%	100% SiC
Hybrid (GaN/IGBT)	51	59%	100% IGBT + 33% GaN

Systems

Use GaN 3L operation most efficient when required, use 2L IGBT's for Peak conditions Gan Systems – 18

Efficiency Analysis (33kW/phase, 400V/160VAC, 10kHz)

Modes	City	Highway	Top speed	Accelera -ting	Regenera -tion
Percentage of time	45%	40%	10%	5%	Braking
Load	10%	20%	7%	100%	30%

 Weighted average of energy consumption (power loss) across discharge/regen cycle

Device Type	Weighted average loss of Leg (w)	Improvement over IGBT	Current Rating /Relative Cost
IGBT	123	-	100% IGBT
SiC	49	57.7%	100% SiC
Hybrid (GaN/IGBT)	56	54.2%	100% IGBT + 33% GaN
GaN	28	77.2%	100% GaN

Power Loss Comparison

All GaN or Hybrid GaN+IGBT offer best price/performance

Loss (W)

Leg

Phase

- GaN/Si IGBT based Hybrid T-Type Inverter for Automotive Application
- GaN/Si IGBT based Hybrid ANPC Inverter for Industrial Applications

Specs & Topology

- ✤ ~1.5kV DC input, 690Vrms AC output, 70kW
 - Internal-parallelization converter (IPC)
 - Interleaving nine-level output
- Hybrid Si / WBG design for low cost and improved efficiency

HSF Module Design

- GaN based HighSwitching Frequency(HSF) module design
 - 30kHz carrier frequency
 - Three-layer stack structure

HSF Module Design

GaN based HSF module design

• 50uF (5 x 10uF) flying capacitor bank based on

capacitor current rating and voltage ripple constraints

Prototype Construction

3D construction

- 240mm x 20.7mm x 88.2mm = 4.38L
- Fans and filter (not shown) less than 1L

Efficiency Estimation

• Peak efficiency - 99.2% with all the

auxiliary power supplies included

Lab-Scale Experimental Results

- Single-phase tests
 - DC voltage 140V,

Rload is 2Ω for single phase test and 6Ω for three-phase test

Three-phase TestResults

- Hybrid Si / GaN get the most out of GaN
- Power density above 12kW/L
- Estimated power/weight ratio around 5kW/kg
- Best in class product: 0.5kW/L 1.3kW/kg

Thank You!

Visit us online at GaNSystems.com