

GN007 Application Note Modeling the Thermal Behavior of GaNPX® and PDFN packages Using RC Thermal SPICE Models

March 08, 2022 GaN Systems Inc.

- GaN Systems provides RC thermal models allowing customers to perform detailed thermal simulation using SPICE
- Models are created based on FEA thermal simulation and have been verified by GaN Systems
- The Cauer model has been chosen allowing customers to extend the thermal model to their system by including interface material and heat sinks
- The RC thermal models of GaN Systems' devices are available in the datasheets.

- GaNpx[®] and PDFN package RC model structure
- How to use the RC model in a SPICE simulation
- □ <u>SPICE simulation examples</u>

Thermal network

- Thermal resistance (R_{θ})
- Thermal capacitance (C_{θ})
- Time dependent temperature distribution

Analogy between Electrical and Thermal Parameters

Electrical Parameters	Thermal Parameters
Voltage V (V)	Temperature T (°C)
Current I (A)	Power P (W)
Resistance R (Ω)	Thermal resistance R_{θ} (°C/W)
Capacitance C (F)	Thermal capacitance C_{θ} (W·s/°C)

Equations for calculating R_{θ} and C_{θ} :

- $R_{\theta} = L/(k \cdot A)$ (1)
- $R_{\theta} = L/(k \cdot A_{active})$ (2)
- $R_{\theta} = \Delta T/P$ (3)
- $C_{\theta} = C_{P} \cdot \rho \cdot L \cdot A$ (4)
- $C_{\theta} = C_{P} \cdot \rho \cdot L \cdot A_{active}$ (5)

where: L – layer thickness (m) k – thermal conductivity (W/m·K) A – layer area (m²) A_{active} – device active area (m²) T – temperature (°C) C_p – pressure specific heat capacity (W·s/kg·K) ρ – density (kg/m³)

Thermal time constant: $\tau_{\theta} = R_{\theta} \cdot C_{\theta}$

4

Cauer and Foster RC network

Cauer Model

- Cauer RC network is based on the physical property and packaging structure
- The RC elements are assigned to the package layers

Pros:

- Cauer RC model reflects the real, physical setup of the device
- Allows to add extra R_θ and C_θ to simulate the Thermal Interface Material (TIM) or Heatsink

Cons:

- Detailed thermal analysis using FEM
- Challenge to extract the thermal capacitance

Foster Model

- Foster thermal model is not based on the physical property and packaging structure
- R_{θ} and C_{θ} are curve-fitting parameters

Pros:

- Can be extracted from the datasheet transient respond curve
- Can be extracted form a measured heating or cooling curves

Cons:

- Valid only for measured conditions
- Adding extra resistance and capacitance requires a new curve fitting

Contents

<u>RC network definition</u>

- GaNpx[®] and PDFN package RC model structure
- How to use the RC model in a SPICE simulation
- □ <u>SPICE simulation examples</u>

Junction-to-Case thermal resistance

- The detailed steady state and transient thermal analysis were conducted using a 3D heat transfer software with Computational Fluid Dynamics (CFD) capabilities: ElectroFlo and ANSYS Icepack
- During the steady state analysis the device junction-to-case thermal resistance was obtained

MPN	R _{θJC} (°C/W)
GS66502B	2.0
GS66504B	1.0
GS66508B	0.5
GS66508P	0.5

RC model structure

The Cauer model was chosen for all GaN Systems transistors

The GaN_{PX®} package consists of 4 layers:

#1

#2

#3

#4

GaN

Attachment

Cu Base

Si

- Layer thermal resistance was derived from the thermal simulation and calculated using the equation (3):
 - $R_{\theta 1} = \Delta T/P = (T_J T_1)/P$
- Layer thermal capacitance was calculated using the active area of the device (equation (5)):
 - $C_{\theta_1} = C_{P_1} \cdot \rho_1 \cdot L_1 \cdot A_{active}$

Thermal and SPICE simulation comparison

GS66508

GS66508P Cauer RC model

	R _θ (°C/W)	C _θ (W·s/°C)
#1	0.015	8.0E-05
#2	0.23	7.4E-04
#3	0.24	6.5E-03
#4	0.015	2.0E-03

Boundary Condition:

- Power P = 78 W
- •

 $T_{case} = 25 \ ^{\circ}C$

Good agreement between transient thermal simulation and SPICE simulation has been achieved

9

GaNpx[®] and PDFN package RC model structure

How to use the RC model in a SPICE simulation

□ <u>SPICE simulation examples</u>

SPICE Netlist in .lib File :

Rth_1 T11 TJ {0.011} Cth_1 0 TJ {4.25e-5} Rth_2 T22 T11 {0.231} Cth_2 0 T11 {2.96e-3} Rth_3 T33 T22 {0.237} Cth_3 0 T22 {6.65e-4} Rth_4 TC T33 {0.021} Cth_4 0 T33 {1.01e-3} SPICE Symbol:

In the SPICE Schematics:

- Connect T_c to a voltage equal to the case temperature
- Read V(T_J) to measure the junction temperature

- □ GaNpx[®] and PDFN package RC model structure
- How to use the RC model in a SPICE simulation

SPICE simulation examples

SPICE simulation examples

A simple boost converter circuit was used to verify the functionality of RC thermal model

- 200 400 V, I_{out} = 4 A
- D = 0.5, F_{sw} = 50 kHz
- T_A = 25 °C
- R_{THCA} = 10 °C/W
- Monitor T_J, T_c

SPICE simulation examples - waveforms

Transient thermal simulation showing T_{J} and T_{C} time constant for first 70ms

SPICE simulation examples – Switching transient

Thermal simulation – Turn-on

Thermal simulation – Turn-off

Tomorrow's power today[™]

Product and application support at gansystems.com