

GN008 Application Note

GaN Switching Loss Simulation using LTSpice

March 13, 2023 GaN Systems Inc.

- GaN Systems provides Pspice / LTSpice simulation models for GaN Enhancement mode HEMT.
- In this presentation, a half bridge double pulse test circuit in LTSpice is introduced and used as the test bench to evaluate switching performance under different electrical parameters.
- Switching losses were simulated and compared with Lab measurement

GAN SYSTEMS SWITCHING LOSS DOUBLE PULSE TEST BENCH

HS/LS Gate driver circuit

Set up the simulation parameters:

.option temp=25 ; Junction temperature setting, adjust between 25 and 150C

.param VBUS = 400; DC bus voltage .param ISW = 30; Switching Current .param RGON =10; Turn-on Gate Resistor Switching test parameters .param RGOFF = 2; Turn-off Gate Resistor .param VDRV P = 6; Turn-on gate voltage .param VDRV N = 3; Turn-off negative gate voltage .param DT = 100n; dead time .param T ON = 2U; Turn-on period .param L DPT = VBUS * (T ON-2*DT) / ISW ; calculated L for switching current setting .param T P = 2.5U; total period .param L GATE =3N; gate inductance .param LS EX= 10p; external source inductance **Parasitic Inductances** .param L DS =3N; power loop inductance

Gate waveforms (Simulated vs Measured)

Gan Systems

- Good correlation between simulated and measured waveforms.
- Parasitics: L_DS = 3nH, L_GATE = 3nH

Switching Loss Calculation using LTSpice

400V/30A Turn-on

400V/30A Turn-off

Switching Loss Simulation vs Measurement

Simulated Switching Loss

- Turn-on loss increases with T_J due to the reduced transconductance at higher temperature
- Turn-off loss for GaN is low and less temperature dependent
- Switching Loss vs. T₁(GS66508T) E_{ON} and E_{OFF} vs R_G (GS66508T) 250 80 $V_{DS} = 400V, R_{GON} = 10\Omega, R_{GOFF} = 2\Omega$ V_{DS} = 400V, I_D = 15A, T_J=25°C Total Switching Energy Loss E_{ON}+E_{OFF} (uJ) -E_{ON}-70 TJ= 150°C 200 60 (Lu) (UJ) 00 00 00 = 100°C 150 Switching [100 30 $T_{J} = 50^{\circ C} T_{J} = 25^{\circ C}$ 20 EOFF 50 10 0 0 0 5 10 15 20 25 30 20 25 10 15 30 Gate Resistance $R_G(\Omega)$ Switching Current I_D (A)
- Switching Loss increases with R_G.

- The GaN E-HEMT switching losses were simulated in LTSpice using a half bridge double pulse test circuit.
- The simulation results were verified against lab measurements. Although the real world measurement can be affected by many factors, a reasonably good agreement was achieved between the simulation model and measurement data.
- This LTSpice test circuit is a convenient tool for end users to set up a simulation platform and familiarize themselves with with GaN E-HEMT switching characteristics.
- It can also be used to easily evaluate the effects of different electrical parameters on GaN E-HEMT switching performance.

Click to download the LTSpice Model User Guide

Tomorrow's power today[™]

Product and application support at gansystems.com