基于氮化镓的高频图腾柱 PFC 优化设计

, , , , , ,

氮化镓功率晶体管可提高电力电子系统的功率密度和效率。本文针对无桥图腾柱PFC 提出了开关频
率和滤波器相关设计指南,以验证氮化镓功率器件在系统级的优势。

作者:加拿大氮化镓系统 (GaN Systems) 公司
刘学超(Jimmy Liu),Paul Wiener

引言

图1:单相无桥图腾柱PFC 的基本原理图

众所周知,氮化镓功率器件为电力电子系统提高频率运行,实现高功率密度和高效率带来可能。然而,在高频下需要对EMI 性能进行评估以满足EMC 法规(例 EN55022 B 类标准)要求。为了达到此目标,本文提出了针对连续电流模式无桥图腾柱功率 因数校正电路(PFC)的EMI 滤波器设计流程。针对功率密度

增加带来的效率影响,将导致功率密度和效率之间的权衡,本文将氮化镓基无桥图腾柱PFC 与传统硅基PFC 进行了数据对比,并提出了采用基于氮化镓器件的图腾柱PFC 最佳范围来权衡功率密度和效率。

EMI 建模和滤波器设计

如图1 所示是单相无桥图腾柱PFC 的基本原理图。为了满足EMI 标准,在拓扑结构和交流电源之间需要添加EMI 滤波器,以衰减高速开关过程产生的噪声。文献[1] 已经对该拓扑进行了详细讨论。与传统的升压PFC 相比,由于省略了桥式二极管导通损耗,图腾柱PFC 系统的设计效率非常高。其中蓝色晶体管代表高速桥臂,一般采用宽禁带器件(例如GaN 功率器件)。主要原因是氮化镓器件具有零反向恢复(Qrr = 0),使得在高频换流过程中高频桥臂的开关损耗大大降低,所以可以采用连续电流模式对图腾柱PFC 进行设计,满足中大功率变换的需求。除了显着降低开关损耗外,氮化镓器件的零反向恢复还大大减少由高频换流di / dt 引起的EMI 噪声产生,特别是对于辐射噪声,可以参考文献[2]。本文下一部分将重点讨论高频连续电流模式图腾柱PFC 传导噪声的EMI 建模方法。

图2:连续电流模式图腾柱PFC 的EMI 滤波器等效电路

 

如图2 所示,EMI 噪声是通过连接在交流电源和被测设备(DUT)之间的线路阻抗稳定网络(LISN)进行测量。 EMI 测试接收器连接到LISN 的输出,以便与标准定义的限定值进行比较。该LISN 实际上相当于一个高通滤波器功能,目的是将高频噪声电流捕获到RC(0.1μF +50Ω)测试路径中被测设备产生的EMI 噪声可以由EMI 测试接收器通过50Ω 电阻测量。同时,LISN 还阻止了所有来自交流电网的噪声,以确保接收器仅仅从被测设备测得噪声。图2 给出了连续电流模式图腾柱PFC 的差模EMI 滤波器等效电路,其包括两级LC 差模滤波器(LDM1 +CX1 和LDM2 + CX2)。