GaN Systems Industrial Articles

GaN Systems公司和合作伙伴应对零排放挑战

清洁科技投资者与电动汽车行业领导者一起参与了1.5亿美元的增资融资 战略投资者利用GaN建立电气化平台实现电源效率的突破 加拿大渥太华,2021年12月14日 – 氮化镓(GaN)功率半导体的全球领导者GaN Systems 公司今天宣布,其合作伙伴的生态系统不断壮大,通过加速全球可持续发展和清洁技术革命,应对净零排放挑战,中和二氧化碳(CO2)和其他温室气体的排放。 高效的发电、配电和转换是推动可持续性和减少排放的关键因素。 由于氮化镓在本质上比硅和碳化硅更高有效,任何使用氮化镓设计的电力转换设备制造商都会为地球的环保做出贡献。 最大的回报来自于在最大的电力来源和用途上实施GaN。工厂和工业电机是最大的电力用户之一。西门子微型驱动器产品经理Christian Neugebauer说:”在电机驱动器中使用GaN,西门子能够提高驱动器的效率。”通过GaN,西门子可以切换到更高的频率,从而使电机响应时间比高压驱动系统更快。” 而且,随着我们大家在观看视频、分享图片、在线游戏和音乐流中使用更多的数据,数据中心里越来越多的电源采用GaN,从而减少了50%的功率消耗,提高了功率密度。 在发电方面,Enphase能源公司认识到氮化镓对逆变器设计的重要性,其效率更高,功率密度增加50%。 除了确保源电力的清洁,Enphase也在减少对稀缺自然资源的消耗。由于GaN能够以更高的功率和更小的规模运行电力系统,铜、塑料和其他材料的使用大大减少。 在消费类设备方面,GaN Systems 公司的合作伙伴也在效率方面进行了阶梯式的改进,并在产品中使用更少的材料。 戴尔和Harman在这方面起到了带头作用。 Harman不仅缩小了充电器的尺寸,在生产中使用更少的材料,而且还采取了额外的措施,在其产品中使用90%的再生塑料。 投资者认为氮化镓技术是应对气候变化的一个重要武器。 参与这轮1.5亿美元投资的GaN Systems 公司的长期投资者,也是清洁技术领域的领导者,包括加拿大商业发展银行(BDC)、Cycle Capital、加拿大出口发展公司(EDC)和宝马iVentures。本轮融资的新投资者包括领投的Fidelity Management & Research Company LLC,以及USI、Vitesco Technologies、Dockyard Capital Management、金沙江资本和宏光半导体。 Cycle Capital创始人兼管理合伙人Andrée-Lise Méthot表示:”作为GaN Systems 公司的长期投资者,我们一直看到GaN有潜力让客户实现净零碳排放的承诺。 “我们对该公司在可靠性和效率方面的领导地位印象特别深刻,行业领导者选择GaN Systems 公司来满足他们的下一代电力需求就证明了这一点。 我们将继续支持该公司实现其使命,并期待看到GaN的持续成功对可持续发展产生的积极影响。” GaN Systems 公司首席财务官Chris Zegarelli说:”对这轮融资的兴趣从一开始就很强烈。 “我们看到了一系列的投资者,有希望加深长期合作关系的战略伙伴,也有认识到我们的技术领先性并看到氮化镓固有的可持续发展优势的新投资者。” “GaN Systems 公司的氮化镓半导体代表了清洁能源转型的一项关键使能技术。氮化镓为电动汽车和可再生能源系统带来了重要的效率和性能提升。BDC资本清洁技术业务部董事总经理Zoltan Tompa表示:”这项技术还将有助于大幅降低数据中心和数百万消费电子设备的能耗。”作为GaN Systems 公司的长期投资者,BDC资本很高兴能增加对这家具有高度影响力的加拿大清洁技术公司的支持。” GaN Systems 公司首席执行官Jim…

突破无线电能传输的隐形障碍

想象一个没有电线的世界,在那里我们不再被一根电线栓在电源插座上为我们的使用电池的电子设备充电。 虽然这是当今无线充电解决方案所承诺的,但它还没有成为现实——因为我们拥有的设备越多,我们需要为它们供电的电线和适配器就越多。 但一定要这样吗? 随着无线电力传输 (WPT) 技术不断发展,高频技术创新突破了无线电力传输的障碍,使您无论身在何处,都能实现新一代真正的无线“即插即用”的使用场景。 挑战:低频 WPT 技术是限制性的 今天的无线充电器使用低频 WPT 技术,其实并不是无线的。 事实上,无线手机充电器通常被视为电源插座的延伸。 低频 WPT 技术有着比较严重的技术缺陷,包括对设备充电地点和方式的限制。 这种充电器可能不太好用,因为在充电开始之前,它需要设备和充电板之间精确对齐。 由于充电线圈的位置取决于手机的型号,因此每个设备所需的对齐方式都不同。 高频技术创新正在突破无线电能传输的障碍,无论您身在何处,都能实现新一代真正的无线“即插即用”应用。 该技术使无线充电板效率极低且充电速度缓慢,平均比电缆多消耗 47% 的电量。这意味着在给同样大小的电池无线充电时,设备必须更加努力地工作,产生更多热量并使用更多能量。此外,当低频 WPT 充电器靠近金属(例如磁性手机支架)放置时,该技术会产生足以损坏设备、电池和/或充电板的热量。 由于人们总是“在旅途中”,如果他们在火车上或汽车中,却没有充满电和可使用的手机,这种情况是不可想象的。不幸的是,在运行过程中使用无线充电板只会带来新的挫败感,尤其是对于坐在车里的人。除了与设备可以放置在哪里充电有关的物理限制外,车辆颠簸或者突然停下来都会让手机不再与无线充电板对准,并且导致设备停止充电。此外,低频WPT技术还会产生电磁场,对门禁系统产生负面影响,影响车门锁/开、行李箱开/关动作,甚至导致发动机启动失败。 解决方案:基于氮化镓的高频无线电力技术 高频WPT技术一直是无线充电解决方案的最佳选择,氮化镓基晶体管一直是高频应用的最佳选择。 然而,直到最近,基于氮化镓的解决方案还没有商用。 随着科技进步,现在氮化镓晶体管已经具有经过验证的性能和市场成熟度,可以应用在广泛的无线充电场景,并带来更高水平的创新。 基于高频氮化镓的 WPT 技术消除了与传统解决方案中的物理限制,提供了空间自由度,带来无忧、即插即用的体验:无线设备只要放在充电板上就可以充电- 无需精确调整位置。 基于氮化镓的放大器非常高效,产生的热量极少,并且使用不会干扰其他电子设备的工作频率。 此外,更容易实现更高的功率水平,从而为无线电力传输和充电开辟了广泛的应用领域。 氮化镓晶体管使无线电能创新达到了新的水平,市场上推出了各种氮化镓电源的 消费类产品,包括为全自动的飞行、移动、海洋和工业机器人和无人机提供高功率的无线充电。 最新的基于氮化镓的创新包括用于汽车车内的无线充电解决方案,它能够为功率超过 15W 的多个设备供电,而且无需与充电板进行物理接触。 其他创新应用包括无绳电动工具、安全和检查无人机以及穿墙数据解决方案,这些解决方案可以为从电视到 5G 等应用提供穿墙电力和数据。 GaN Systems 的高频 WPT 应用晶体管使一个没有电线的世界成为可能。 如需了解更多信息,请参阅此概述:氮化镓在高频 WPT 应用中的分析和优势.

GaN Systems 推出性能更高、成本更低的全新晶体管

GaN Systems 是氮化镓功率半导体的全球领导者,今天在业界最广泛的 氮化镓功率晶体管产品组合中又推出了两款新晶体管;该晶体管采用行业标准的 8×8 毫米 PDFN 封装。 GS-065-011-2-L 使用户能够降低 45W 至 150W 应用中每瓦功率的成本,而 GS-065-030-2-L 是市场上第一款使设计人员能够在高达 3,000W 功率水平的应用中发挥低成本氮化镓优势的产品。 这些新部件是 GaN Systems 公司低成本 氮化镓晶体管系列中的最新成员,它们使设计人员能够进一步提高在能效、热管理和功率密度方面的性能,并提高设计灵活性和成本效益,以满足消费者、工业领域和数据中心客户的新需求。 这些新型晶体管具有更低的导通电阻、更高的稳健性和热性能、更高的 VDS(瞬态)额定值以及可简化客户采用、可扩展性和商业化的行业标准外形。 GS-065-011-2-L 是一款 650 V、11 A、150 mΩ 底部冷却晶体管,非常适合充电器和适配器等消费电子应用,这包括受益于晶体管更好的热性能的更高功率适配器的设计。 GS-065-030-2-L 是一款 650 V、30A、50 mΩ 底部冷却晶体管,具有 GaN Systems 的 PDFN 产品系列中最低的 RDS(on)。 更低的 RDS(on) 意味着更低的功率损耗和更高的额定功率,从而带来更高的效率和功率密度。 GS-065-030-2-L GaN 晶体管非常适合数据中心、工业和 5G 应用,例如电信和服务器 SMPS、电机驱动、储能系统和无桥图腾柱 PFC 解决方案。…

氮化镓供电:彻底改变当今最耗电的行业

我们生活在一个日益由数据和能源驱动的世界中。 数据中心、电动汽车、可再生能源系统以及个人电子产品比以往任何时候都更加重要。 这些行业正在推动日益增长的能源需求。 同时,要解决二氧化碳排放量的快速增长问题,就需要行业以更高的能效运营。 多数公司都知道能源效率对于长期的可持续增长和成功至关重要。 功率转换中能量消耗是一个基本问题。 电力输入 机器 功率输出 能源浪费 全球能源消耗中有 20% 以上通过低效的功率转换以热的方式流失。 通过使用 氮化镓半导体,这种浪费的能源可以减少 50% 浪费 硅基半导体技术已有数十年历史,并且已经达到其极限。 这就是为什么氮化镓正在取代硅作为能源系统基本结构的原因。 与硅基的解决方案相比,氮化镓能够设计出更小、更轻、更节能的能源系统,同时降低系统成本。 更小 更轻 更高效 从数据中心机架上的嵌入式服务器电源到电动汽车中的牵引驱动和车载充电机。 氮化镓系统(GaN Systems)致力于通过实现更高效的电力电子设备来实现可持续的未来,从而创造一个具有更高水平适应性、包容性和环保的世界。 氮化镓系统(GaN Systems) 制造的氮化镓功率器件正在彻底改变当今高能耗的行业。

华尔街日报:镓正在改变我们日益电气化的世界

缩小手机充电器、为电动汽车供电并使 5G 成为可能的新型材料 Christopher Mims 的这篇专栏文章最初于 2021 年 7 月 17 日刊登在《华尔街日报》上,它探讨了氮化镓的用途和潜力。  如果您是在屏幕上阅读本文,那么很可能您其实是在盯着未来。 在大多数 LED 屏幕以及现在室内照明普遍使用的 LED 灯中存在着金属镓。 虽然它不像硅那样广为人知,但它正在接管硅曾经占据主导地位的许多领域——从天线到电源转换器和其他被称为“电力电子”的能量转换系统。 在此过程中,它实现了一系列令人惊讶的新技术,从更快充电的手机到更轻的电动汽车,再到支持我们使用的应用程序和服务的更节能的数据中心。 作为从岩石中提取铝的副产品,镓的熔点是如此之低,以至于当您将其握在手中时,它就会变成一种流动的银白色液体。 就其本身而言,它并不是非常有用。 但是将其与氮结合,制成氮化镓,它就成为具有宝贵特性的坚硬晶体。 它出现在许多自动驾驶汽车使用的激光传感器中、支持当今快速蜂窝无线网络的天线中,以及越来越多地出现在对提高可再生能源收集效率至关重要的电子产品中。 许多由氮化镓(也称为 GaN)制成的最具体的产品出现在电力电子领域。 目前,您可以购买带有足够电量的小型 USB-C 充电器来同时为您的笔记本电脑、手机和平板电脑供电,虽然它们并不比我们多年来使用的科技产品所附带的功率低得多的电源转换器大。 将一种电压转换为另一种电压的电力电子设备也在电动汽车的许多方面发挥关键作用。 芯片制造商 GaN Systems 的首席执行官 Jim Witham 表示,它们更小、更轻、更高效并且散发的热量更少,因此电动汽车充电后可以行驶更远。 他补充说,这些特点也使得从太阳能电池板等可再生能源中榨取更多的电力成为可能。 当电力转换频繁发生时,即使是很小的效率提高也会产生显著效果,例如在包括电池存储的可再生能源电网中。 虽然氮化镓看起来很神奇,它也面临着来自久经考验的硅和越来越多的新材料的竞争,这些新材料显示出彻底改变我们的电子产品的潜力。 尽管如此,氮化镓的用途仍在不断扩大。 GaN Systems 的有些客户尝试在数据中心使用其芯片,在那个使用场景中通过降低功耗和废热可以节省大量的电费。但是这些客户目前并没有公开承认使用该技术。 直到不久前,氮化镓 还只是实验室中的一个项目。 然后五角大楼产生了兴趣,他们在寻找新型电子设备来驱动下一代雷达和无线通信。 剑桥大学材料科学教授兼氮化镓中心主任雷切尔奥利弗说,从 2000 年左右开始,国防部高级研究机构 Darpa 的资助推动了扫除商业化障碍所需的实验。 除了在民用领域应用广泛,氮化镓 现在还出现在军用硬件中,用于从无线电干扰到导弹防御的所有领域,这一切都得益于其独特的特性。 与硅相比,氮化镓可以处理相对大量的电力。…

西门子通过与 GaN Systems合作在驱动技术方面取得突破

我们经常认为工业部门是保守的,尤其是在采用新技术方面。 但随着我们进入工业革命的最新阶段 –工业 4.0 – 包括智能制造和工业物联网 (IIoT),氮化镓功率晶体管等开创性技术正在被采用。 氮化镓在机器人和无人机的无线充电、工业电源和电机驱动等领域掀起了波澜。 西门子,在最近的一篇名为“ “好小,却好震撼! ”的博客中,描述了氮化镓在电力电子中发挥的作用,以及该公司如何从使用硅和碳化硅半导体转向在其新一代西门子转换器中使用氮化镓;西门子提到这是“一种从未在驱动技术中用于半导体的材料”。 西门子技术部门的 Andreas Gröger 表示,“氮化镓使全新的应用成为可能,而这种挑战带来了新半导体驱动技术的突破。” 这些驱动器满足了客户对低电压、小尺寸和安全要求不断增长的需求。 西门子是一个很好的例子,目前世界上一些最大的公司正在利用氮化镓进行创新,氮化镓系统公司很荣幸能够参与西门子正在进行的工作。 2020 年初,我们宣布西门子发布了一款基于氮化镓的驱动器,作为其 Simatic Micro-Drive 产品线的一部分,从而提供更高的效率和更快的电机响应时间。 这些迷你驱动器目前只有 2 厘米宽,并且不需要额外的冷却,这都归功于采用了氮化镓。  为什么选择氮化镓? 现代制造企业需要响应新技术和能源需求,以降低成本、增加收入并提高整个工厂的能源效率。 为了保持连续运行,所有形式的机械设备都需要更简单、更可靠和更强大的电机驱动器,工业公司目前通过使用氮化镓来取得这些优势。 单击此处 获取在有关工业应用中使用氮化镓系统公司产品的更多信息。

Wireless Charging Drones and Robots

Drones and Robots are used in a growing number of applications and those with wireless power have a big future in a $100B Industry

无线电源成为全球会议的热门话题

在最近举行的无线电源周(WPW),工研院(台湾工业技术研究院)和CES会议上,许多公司展示了无线电源技术的可行性,去除电源线的解决方案以及如何满足客户在功率水平,能效, 成本和性能方面的要求。 会上展示的这些解决方案的共同点是易于使用和实施。 对许多无线电源应用的测评也令人大开眼界。 很多人在讨论无线电源这个话题时,都会想到手机, 它确实是无线电源应用的绝佳场景。 但是,除了手机以外,无线电源的应用场景还有很多, 比如像无人机,机器人,电动自行车,脚踏踏板车,摩托车踏板车之类的产品。 使用无线电源的动力来自于市场应用。 目前引起关注并取得一定成功的市场应用包括用于仓储,运输,医疗手术,安全,清洁和修剪的机器人和应用于医疗,农业,建筑,公用事业,保险,油气和房地产, 以及安全市场的无人机,这些无人机具有不断扩大的航程,更好的视觉系统和改进的热像仪; 第三个应用领域是微动性; 随着越来越多的人使用非常规或更便捷的交通方式,无线充电在电动自行车和踏板摩托车应用方面取得了增长动力。 当我在近期的网络会议上收听和观看发言时,我注意到以下几个趋势:人们对生态系统内无线电源的发展高度关注,感到兴奋和坚决支持,大量创新以及成熟的技术表明我们 已经非常接近于清除无线电源主流化的障碍。 这些演讲和讨论也进一步证明,目前应用于手机的无线充电技术并不能使我们满意。 目前的低频无线功率传输(WPT)技术具有低功率,充电缓慢和效率低的缺点,它需要精确定位并具有其他一些使用上的限制。 我们想要的无线充电技术应该具有高功率,快速充电,高效率,随意放置,支持多设备充电以及功率级别适合所有市场(瓦到千瓦)的特点。 氮化镓功率晶体管的实现是高频无线充电技术走向成熟的重要推动力。 要实现我们想要的随意放置或者能够在远距离充电的空间自由度,就必须保持高能效,这要求在ISM(工业,科学和医学)频段(通常为6.78或13.56 MHz)中以高频进行操作。 因此,传统的硅晶体管不适合,而GaN晶体管是首选的半导体。 目前,由于旧技术的局限性,人们对无线电源产生了一些负面看法。但是,随着科技公司们在其产品中逐渐采用和实施高频无线充电系统,我们将开始看到更多我们想要的东西。

氮化镓系统公司秋季评论

当我们即将告别 2020 年的最后一个季度时,我脑海中浮现出三个词来形容 这刚刚过去的一年,它们是颠覆性,韧性和创新性。 Covid-19 大流行加速了 每个行业(从供应链到实验室运营)的前所未有的颠覆性浪潮。 每个公司都 必须做出反应,将重点放在增强韧性上,同时继续创新并将重要的新产品推 向市场。这在 氮化镓系统公司(GaN Systems)也得到体现,我们欣慰地看 到氮化镓晶体管的使用已从早期的小众产品跃升为被各行业接受的主流产品- 我相信这一转变将在 2021 年继续加速。 新产品,设计工具和参考设计 在过去的 90 天内,氮化镓系统公司(GaN Systems)推出了四个新的电源模 块评估套件: 100V 驱动器 GaN –集成式 DC / DC 功率级模块 650V 150A 半桥 IPM 650V 150A 全桥模块和驱动器 650V 300A 三相 GaN 电源模块和驱动器 以及面向汽车市场的下一代 650V 晶体管。 新模块的设计易于使用,并可以 在大功率应用中评估其性能,例如牵引逆变器,工业电机,储能系统,PV 逆 变器以及各种低功率板和砖式电源。 650V 晶体管是我们面向汽车市场的下 一代 650V,60A 晶体管系列中的第一款产品,旨在满足汽车可靠性标准,包 括…

在第四次工业革命中,电力必须追赶数据无线传输的脚步

随着机器人技术、人工智能和传感器的普及,与100年前引入的装配线相比,今天日益智能化的工业环境几乎难以辨认。 这的确是真的——但有一个重要的例外。在一些最先进的工厂和仓库裏,依赖电力的硬件设备仍然插在一个固定的电源插座上操作或充电。 因此,虽然数据传输已经成功地从有线传输发展到无线传输,但这只是电力传输的开始。 数据和电力都是驱动第四次工业革命持续增长和全球影响的引擎。 无线电源的概念并不新鲜。19世纪90年代,尼古拉·特斯拉(Nikola Tesla)尝试了无线配电。 那么,无线电源成为行业主流的障碍是什麽呢?功率级、效率、成本和性能是以往难以克服的问题。 如今,这种情况已不复存在,因为使用GaN功率半导体的无线系统正在解决以前无法解决的问题,并促成新一代的工业创新。 在使用GaN功率半导体的高频系统中,电力发送器和接收器之间的功率和距离可以达到1000 W和1000毫米。 过去基于硅的无线解决方案只能在5毫米的距离内传输20 W的电能。 现在,无线电源可以同有线电源相同的效率和高功率水平传输,此外还具有工业环境需要远距离无束缚传输的主要优势。GaN可实现具有显著空间自由度的快速高功率无线充电。 那么,无线电源对于第四次工业革命意味着什么呢?工业环境可以变得更加灵活、智能、自主、高效和安全。 将受益于无线电源的技术包括机器人、物联网传感器、5G网络和人工智能。 移动机器人 工业机器人需要几百瓦甚至更大功率的快速充电。在有线环境中,需要人工操作员与对接机制进行精确的物理连接。 这限制了机器人的自主性和效率。在高速大功率无线环境中,一个自主移动机器人可以简单地将自己置于充电板上。 通过紧凑的设计,无线充电站可以战略性地、灵活地放置在整个设施中,以获得最大的机器人正常运行时间和新的自主水平。 物联网传感器 传感器的电线成本远远超过传感器本身的成本。有线或电池供电的传感器通常没有备用电源,因此哪怕只有一个按键传感器断电,也可能会关闭装配线甚至整个工厂。 通过无线方式供电的传感器将以最有效的方式进行无线通信。 可以将无线充电作为主要系统或冗余系统引入,在每个传感器的范围内放置多个无线功率发射器,以在发生故障时充当备用电源。 数据和电源都必须在工业4.0网络中流动,不像有线网络那样有人工维护和干预的需求。 5G网络 与4G(1,000 Mbit / s)网络相比,5G(10,000 Mbit / s)具有更低的延迟,更高的可靠性和10倍的数据传输容量,使得在生产,维护和物流网络以及连接的硬件中,更高的智能性和自主性成为可能。 随着数据负载的增加以及传感器和基站的激增,功率需求和维护也可能增加。 尽管在5G网络中每数位的能源成本是4G的1/10,但预计其能耗至少是当前网络的两倍。 除非引入新的效率,否则能源消耗巨大的基站和大量的数据传输将影响能源成本。 智能工厂的5G革命需要伴随着从有线到无线电源的演进。 人工智能 随着智能IoT传感器的增加以及5G数据量的增加和数据延迟的减少,人工智能在工业环境中的集成将增加。 这不仅会发生在有关硬件性能和维护的长期分析中,而且还会以不到一毫秒的延迟向精密机器人设备和移动机器人发起“实时”号令。 如果在工厂或仓库内的适当位置没有可靠的无线高速电源,则将限制AI在工业中的使用。 数据的无线传输和分析可能实现,但是除非具有无线电源,其实际操作价值有限。 工业设计的灵活性 工业4.0的智能工厂和仓库的增长归因于从大批量,统一制造向小批量定制产品生产的转变-伴随着更快的周转时间。随着制造需求的变化,这可能需要快速重新配置设施。 如果将地板设计与特定的电力结构捆绑在一起,那么实现这种快速变化将变得很困难。 无线充电站使工业设施的重新设计更加灵活,所产生的环境更加整洁,这也是使用自动移动机器人的一个优势。 在流水线之间或仓库中运输补给品的机器人需要绕过的障碍物会更少。 在充满挑战的环境中安全运行 基于接触的(有线)充电的问题是,暴露于灰尘,湿气和其他碎屑会对性能产生负面影响,并且需要昂贵的维护。 因为无需担心电源连接器,无线充电系统可以密封,用来抵抗肮脏和腐蚀性的环境因素。 这使得在采矿,建筑或水下作业等无法使用电线或不能安全使用电线的高风险和挑战性环境中,可以实现更智能的工业作业。 工业4.0的持续发展不应再受电缆和软线束缚,也不应该因连接器和触点故障而受到阻碍。只有在电源和数据都是无线的情况下,才能充分发挥其潜力。现在是时候了。