GaN Systems Transportation Articles

Reduce range anxiety for electric and autonomous vehicles

GaN enables smaller, more efficient and lower cost power systems. For the automotive industry, this means smaller, lighter batteries, improved charging performance, and greater range for vehicles. Additionally, GaN advances capabilities in the vehicle autonomous and wireless power applications. Today, many leading companies are designing and shipping products with GaN Systems’ transistors proving the value…

GaN Systems公司和合作伙伴应对零排放挑战

清洁科技投资者与电动汽车行业领导者一起参与了1.5亿美元的增资融资 战略投资者利用GaN建立电气化平台实现电源效率的突破 加拿大渥太华,2021年12月14日 – 氮化镓(GaN)功率半导体的全球领导者GaN Systems 公司今天宣布,其合作伙伴的生态系统不断壮大,通过加速全球可持续发展和清洁技术革命,应对净零排放挑战,中和二氧化碳(CO2)和其他温室气体的排放。 高效的发电、配电和转换是推动可持续性和减少排放的关键因素。 由于氮化镓在本质上比硅和碳化硅更高有效,任何使用氮化镓设计的电力转换设备制造商都会为地球的环保做出贡献。 最大的回报来自于在最大的电力来源和用途上实施GaN。工厂和工业电机是最大的电力用户之一。西门子微型驱动器产品经理Christian Neugebauer说:”在电机驱动器中使用GaN,西门子能够提高驱动器的效率。”通过GaN,西门子可以切换到更高的频率,从而使电机响应时间比高压驱动系统更快。” 而且,随着我们大家在观看视频、分享图片、在线游戏和音乐流中使用更多的数据,数据中心里越来越多的电源采用GaN,从而减少了50%的功率消耗,提高了功率密度。 在发电方面,Enphase能源公司认识到氮化镓对逆变器设计的重要性,其效率更高,功率密度增加50%。 除了确保源电力的清洁,Enphase也在减少对稀缺自然资源的消耗。由于GaN能够以更高的功率和更小的规模运行电力系统,铜、塑料和其他材料的使用大大减少。 在消费类设备方面,GaN Systems 公司的合作伙伴也在效率方面进行了阶梯式的改进,并在产品中使用更少的材料。 戴尔和Harman在这方面起到了带头作用。 Harman不仅缩小了充电器的尺寸,在生产中使用更少的材料,而且还采取了额外的措施,在其产品中使用90%的再生塑料。 投资者认为氮化镓技术是应对气候变化的一个重要武器。 参与这轮1.5亿美元投资的GaN Systems 公司的长期投资者,也是清洁技术领域的领导者,包括加拿大商业发展银行(BDC)、Cycle Capital、加拿大出口发展公司(EDC)和宝马iVentures。本轮融资的新投资者包括领投的Fidelity Management & Research Company LLC,以及USI、Vitesco Technologies、Dockyard Capital Management、金沙江资本和宏光半导体。 Cycle Capital创始人兼管理合伙人Andrée-Lise Méthot表示:”作为GaN Systems 公司的长期投资者,我们一直看到GaN有潜力让客户实现净零碳排放的承诺。 “我们对该公司在可靠性和效率方面的领导地位印象特别深刻,行业领导者选择GaN Systems 公司来满足他们的下一代电力需求就证明了这一点。 我们将继续支持该公司实现其使命,并期待看到GaN的持续成功对可持续发展产生的积极影响。” GaN Systems 公司首席财务官Chris Zegarelli说:”对这轮融资的兴趣从一开始就很强烈。 “我们看到了一系列的投资者,有希望加深长期合作关系的战略伙伴,也有认识到我们的技术领先性并看到氮化镓固有的可持续发展优势的新投资者。” “GaN Systems 公司的氮化镓半导体代表了清洁能源转型的一项关键使能技术。氮化镓为电动汽车和可再生能源系统带来了重要的效率和性能提升。BDC资本清洁技术业务部董事总经理Zoltan Tompa表示:”这项技术还将有助于大幅降低数据中心和数百万消费电子设备的能耗。”作为GaN Systems 公司的长期投资者,BDC资本很高兴能增加对这家具有高度影响力的加拿大清洁技术公司的支持。” GaN Systems 公司首席执行官Jim…

GaN Systems 和 USI 建立战略合作伙伴关系以促进氮化镓在电动汽车中的应用

GaN Systems 与环旭电子签署战略合作协议,共同开发面向汽车市场的氮化镓功率模块。 作为此战略合作伙伴关系的一个方面,环旭电子将收购 GaN Systems 的少数股份,这也是GaN Systems最近一轮增资融资的一部分。 加拿大渥太华,2021 年 11 月 24 日 – 氮化镓功率半导体的全球领导者 GaN Systems 今天宣布与 ASE Technology 的子公司 Universal Scientific Industrial (Shanghai) Co., Ltd (环旭电子/ USI) 建立战略合作伙伴关系,共同开发氮化镓电动汽车市场的电源模块。随着电动汽车从使用传统的硅功率晶体管转向性能更好的氮化镓,功率模块也在转变,以满足在功率转换过程中降低热损失和精准控制电压的需求。 氮化镓电源模块可实现更高的效率、更远的 EV 续航里程和更好的 EV 性能。   “我们很荣幸能与 GaN Systems 这样的行业领导者合作,” 环旭电子战略投资高级副总裁 JP Shi 表示。 “我们与 GaN Systems 合作多年,对该公司在高可靠性、汽车级氮化镓方面的领先地位印象深刻,氮化镓是电动汽车的重要组成部分。我们期待构建优化且高效的氮化镓模块,这些模块将成为一流 DC-DC 转换器、车载充电器和牵引逆变器的基石。” EV 牵引传动系统的核心是半导体功率模块。环旭电子在功率模块、IPM(智能功率模块)、DC/DC转换器、RF功率晶体管等各种封装类型和高可靠性模块的电力电子制造方面拥有20多年的经验。环旭电子通过引入汽车功能安全标准ISO26262,并通过第二章和第七章的制造认证,获得了汽车行业OEM和一级供应商的认可。 GaN Systems…

关于100V氮化镓 在 48V 应用中优势的分析

这篇由 GaN Systems 电力电子应用工程师 Lei Kou 和 GaN Systems 应用工程经理 Juncheng (Lucas) Lu 撰写的技术文章全文发表在 EE Power 上。 本文介绍了一个超低寄生参数 Eon/Eoff 测量平台以及 100V 氮化镓在 48V 应用中的优势。 在消费电子产品和汽车电气化领域,我们现在都处于追求“更多”的周期中。对于消费者来说,更多的视频、图片、 Instagram 以及Snap都在推动数据需求暴涨。在汽车领域,每个产品周期都新增更多特性和功能,包括娱乐外围设备、安全功能、混合运动扭矩以及额外和更亮的 LED。提供“更多”的功能意味着需要更多的电力。更大的功率通常受到尺寸和/或重量限制的限制。这就是为什么越来越多的行业正在转向更高电压的 48V 配电,而不是传统的 12V 配电。 为什么选择使用48V?考虑到电缆、连接器和/或 PCB 的限制,系统中的 I2R 传导损耗可能不利于系统效率,并且减少流向负载的功率。例如,服务器处理器功率从 100W-200W 增加到 400W 甚至更高将这种增加的功率分配给多个服务器处理器会产生更多损耗,除非通过更高的电压分布或更大的铜母线来缓解。传统的数据中心/服务器电源架构如图 1(a) 所示,其中所有主要处理器/内存设备均由 12V 总线供电。 12V 总线的 I2R 损耗过大,能量转换级数多,从而降低了系统总效率。为了减轻严重的母线损耗并减少配电路径中的能量转换阶段,48V 总线数据中心/服务器架构如图 1(b) 所示。通过消除在线 UPS、电缆和线束,这种电源架构具有优于当前设计实践的优势。趋势清楚地表明,电源转换受益于 48V 总线,更节能,成本更低(CAPEX…

GaN Systems 与宝马签署半导体产能协议

安大略省渥太华,2021 年 9 月 14 日 – 氮化镓功率半导体的全球领导者 GaN Systems 今天宣布与宝马集团就 GaN Systems 的高性能汽车级氮化镓功率晶体管签署全面的产能协议,这增加了 电动汽车关键应用的效率和功率密度。 GaN 功率半导体是实现下一代高性能电动汽车所需的小尺寸、轻量化和高效率的关键要素。 根据协议条款,GaN Systems 将为批量生产的多种应用提供产能。 GaN Systems 的产量保证是宝马等汽车制造商供应链可靠性的关键组成部分。 GaN Systems 首席执行官 Jim Witham 表示:“电动汽车代表着交通运输的未来,我们很高兴能够继续以我们的设计和生产能力支持宝马。” “这项价值 数亿美元的协议证明了宝马对创新和可持续发展的承诺。” 宝马与 GaN Systems 的关系始于四年多前,当时宝马的工程师发现氮化镓使得小尺寸、重量轻、低成本的车载充电器、DC/DC 转换器和牵引逆变器成为可能。 这导致了宝马风险投资公司 BMW I Ventures 的投资,以支持和加速 氮化镓技术在汽车应用上的认证。 “GaN Systems 和 BMW 工程师之间的密切合作有助于巩固汽车系列生产的技术,从而产生了当今市场上最先进的氮化镓功率晶体管,”BMW i Ventures 的管理合伙人 Kasper Sage先生如是说。 “随着电动汽车变得越来越突出,对关键半导体组件的需求只会增加,因此与 GaN Systems…

氮化镓供电:彻底改变当今最耗电的行业

我们生活在一个日益由数据和能源驱动的世界中。 数据中心、电动汽车、可再生能源系统以及个人电子产品比以往任何时候都更加重要。 这些行业正在推动日益增长的能源需求。 同时,要解决二氧化碳排放量的快速增长问题,就需要行业以更高的能效运营。 多数公司都知道能源效率对于长期的可持续增长和成功至关重要。 功率转换中能量消耗是一个基本问题。 电力输入 机器 功率输出 能源浪费 全球能源消耗中有 20% 以上通过低效的功率转换以热的方式流失。 通过使用 氮化镓半导体,这种浪费的能源可以减少 50% 浪费 硅基半导体技术已有数十年历史,并且已经达到其极限。 这就是为什么氮化镓正在取代硅作为能源系统基本结构的原因。 与硅基的解决方案相比,氮化镓能够设计出更小、更轻、更节能的能源系统,同时降低系统成本。 更小 更轻 更高效 从数据中心机架上的嵌入式服务器电源到电动汽车中的牵引驱动和车载充电机。 氮化镓系统(GaN Systems)致力于通过实现更高效的电力电子设备来实现可持续的未来,从而创造一个具有更高水平适应性、包容性和环保的世界。 氮化镓系统(GaN Systems) 制造的氮化镓功率器件正在彻底改变当今高能耗的行业。

华尔街日报:镓正在改变我们日益电气化的世界

缩小手机充电器、为电动汽车供电并使 5G 成为可能的新型材料 Christopher Mims 的这篇专栏文章最初于 2021 年 7 月 17 日刊登在《华尔街日报》上,它探讨了氮化镓的用途和潜力。  如果您是在屏幕上阅读本文,那么很可能您其实是在盯着未来。 在大多数 LED 屏幕以及现在室内照明普遍使用的 LED 灯中存在着金属镓。 虽然它不像硅那样广为人知,但它正在接管硅曾经占据主导地位的许多领域——从天线到电源转换器和其他被称为“电力电子”的能量转换系统。 在此过程中,它实现了一系列令人惊讶的新技术,从更快充电的手机到更轻的电动汽车,再到支持我们使用的应用程序和服务的更节能的数据中心。 作为从岩石中提取铝的副产品,镓的熔点是如此之低,以至于当您将其握在手中时,它就会变成一种流动的银白色液体。 就其本身而言,它并不是非常有用。 但是将其与氮结合,制成氮化镓,它就成为具有宝贵特性的坚硬晶体。 它出现在许多自动驾驶汽车使用的激光传感器中、支持当今快速蜂窝无线网络的天线中,以及越来越多地出现在对提高可再生能源收集效率至关重要的电子产品中。 许多由氮化镓(也称为 GaN)制成的最具体的产品出现在电力电子领域。 目前,您可以购买带有足够电量的小型 USB-C 充电器来同时为您的笔记本电脑、手机和平板电脑供电,虽然它们并不比我们多年来使用的科技产品所附带的功率低得多的电源转换器大。 将一种电压转换为另一种电压的电力电子设备也在电动汽车的许多方面发挥关键作用。 芯片制造商 GaN Systems 的首席执行官 Jim Witham 表示,它们更小、更轻、更高效并且散发的热量更少,因此电动汽车充电后可以行驶更远。 他补充说,这些特点也使得从太阳能电池板等可再生能源中榨取更多的电力成为可能。 当电力转换频繁发生时,即使是很小的效率提高也会产生显著效果,例如在包括电池存储的可再生能源电网中。 虽然氮化镓看起来很神奇,它也面临着来自久经考验的硅和越来越多的新材料的竞争,这些新材料显示出彻底改变我们的电子产品的潜力。 尽管如此,氮化镓的用途仍在不断扩大。 GaN Systems 的有些客户尝试在数据中心使用其芯片,在那个使用场景中通过降低功耗和废热可以节省大量的电费。但是这些客户目前并没有公开承认使用该技术。 直到不久前,氮化镓 还只是实验室中的一个项目。 然后五角大楼产生了兴趣,他们在寻找新型电子设备来驱动下一代雷达和无线通信。 剑桥大学材料科学教授兼氮化镓中心主任雷切尔奥利弗说,从 2000 年左右开始,国防部高级研究机构 Darpa 的资助推动了扫除商业化障碍所需的实验。 除了在民用领域应用广泛,氮化镓 现在还出现在军用硬件中,用于从无线电干扰到导弹防御的所有领域,这一切都得益于其独特的特性。 与硅相比,氮化镓可以处理相对大量的电力。…

GaN 和年轻工程师的未来

第七届“GaN 系统杯”中国电源学会 (CPSS) 设计大赛 正在如火如荼进行中,凸显年轻工程师在世界未来的发展中扮演的重要角色,以及他们如何通过氮化镓创新为世界提供发展动力。多年来,参赛大学生们的热情、创造力和聪明才智总是让我们叹为观止。 本着竞赛精神,我们重点展示了去年黑龙江科技大学特等奖获得者和一等奖获得者之一华中科技大学团队的设计。这些团队展示了使用氮化镓系统公司的 650V GS66502B 晶体管 的双向 AC/DC 转换器的最佳性能和最高功率密度设计,该晶体管满足多项系统技术要求和参数,包括: 400W 额定输出功率 220VAC 输入电压和 300-400VDC 输出电压 满载时双向 94% 的效率 30W/cm3 功率密度 闭环控制 过流过压保护功能 在 25°C 自然冷却下连续运行 30 分钟 获奖设计 黑龙江科技大学团队采用前级图腾柱无桥PFC提高系统功率因数,降低输入电流THD,后级同步降压拓扑。 该设计允许在正向和反向工作模式之间自动切换。 亮点包括实现 96% 以上的双向效率和 41W/cm3 的功率密度,超出设计要求。 华中科技大学的设计采用前级图腾柱无桥PFC和后级双向非隔离Buck/Boost转换器,正向工作在Buck模式,反向工作在Boost模式。 拓扑很简单, 它只需要很少的开关器件,不需要变压器,减小了转换器的体积,可以实现更高的功率密度。 该设计实现了 85W/cm3 的功率密度。 借助氮化镓,电力电子工程师正在通过更高效、更小、更轻的封装设计改变世界,同时提供当今电力电子所需的高性能和可靠性。 这些创新设计为数据中心、电动汽车、可再生能源系统、工业电机和消费电子等依赖电力的行业的应用提供了极大的提升。

GaN Systems扩展汽车产品线

GaN功率半导体的全球领导者GaN Systems今天宣布扩展其汽车级650V晶体管产品线。 GS-065-060-5-B-A是60A,底部冷却的晶体管,专为要求苛刻的大功率电动汽车应用而开发,例如车载充电器,牵引逆变器和DC-DC转换器等设备。 氮化镓的高频特性与GaN Systems专有的Island Technology®布局以及GaNPX®封装相结合,可提供当今电力电子设备所需要的高功率,低损耗等特性。 电源工程师利用氮化镓功率晶体管的功能使他们的产品比原来轻便小巧一半,并降低系统成本。 GaN Systems的这一新产品具有以下特点: •符合AEC-Q101和AutoQual +™ 标准 •低RDS(on) (25mΩ)和超低损耗品质因数(FOM) •60A IDS等级 •采用双栅极焊盘的11mm x 9mm小型PCB板,可实现最佳的电路板布局 GaN Systems首席执行官Jim Witham表示:“我们通过超过行业标准的新汽车产品和资格测试设定了较高的基准。” “汽车是GaN Systems的关键市场,在该市场中,减小电池尺寸,扩展最大行驶里程以及保持电力电子系统的小巧轻便,对于当前和未来的EV设计都是必不可少的。” 如需更多信息,请下载数据表,或与GaN Systems联系。

氮化镓系统 (GaN Systems)氮化鎵功率器件在快充市場的應用

摘要: 氮化鎵成爲電子行業的熱門技術,圍繞氮化鎵的產品、可靠性和解決方案是目前業界關注焦點。本文將探討充電器的技術發展趨勢和氮化鎵(GaN)功率器件在高功率、小型化需求下的巨大市場前景,然後從器件性能、可靠性和解決方案三個方面表明氮化鎵系統 (氮化镓系统 (GaN Systems)) 公司爲終端客戶提供更低成本、更高可靠性和更完整的氮化鎵功率器件產品及系統解決方案。 1. 市場前景 2020年是消費類充電器特別是快充市場快速發展的重要年份,隨著市場不斷成熟和趨勢日益明確,消費者對小尺寸和大功率快速充電器需求越來越大,市場前景巨大。其中兩個重要技術指標就是高功率密度和高效能。高功率密度體現在同一額定功率下的小體積,而高效能體現在節能環保和更低的工作溫度上。氮化鎵器件由於具有極高的開關速度、同一晶圓下的小通態電阻,使得更高效能和更高開關頻率快速充電成爲可能。2020年内置氮化鎵器件的快充技術進入快速發展階段,根據行業調查顯示,作爲消費類電子風向標的手機行業中,目前已經有華爲,小米,OPPO等多個知名品牌推出了基於氮化鎵快充產品。電商方面,更有多達20家品牌先後推出氮化鎵基快充產品。 圖一總結了兩個主要功率段下充電器的主要電路和功率密度以及效能指標要求。對於75W以下(30W-65W)充電器,目前主要電路為單端准諧振(Quasi-Resonant, QR)反激或有源箝位反激(Active Clamp Flyback, ACF)兩種電路。最高效能指標要求接近94%,功率密度要求20W/in3。高於75W(100W-300W)充電器,目前基本采用兩級電路方案,前級是功率因數校正電路(PFC)后級為LLC諧振或其他隔离DC/DC電路。目標最高效能要求達到95%,功率密度要達到22W/in3以上。與傳統矽(Si)基功率器件相比,新材料的氮化鎵器件具有更高的性能,為充電器特別是快充產品的小型化和高效能帶來可能。   2. 氮化鎵器件與矽基器件的比較 氮化鎵器件由於其寬禁帶特點,它的主要優勢在於高開關速度和低開關損耗上,另外對於同一晶圓大小的功率器件,氮化鎵功率器件具有低於矽基器件的通態電阻。系統層面可以帶來更高效能,更低工作溫度和更小體積,因此非常適用於小體積、高功率密度的充電器產品設計。表一總結了已量產的氮化鎵功率器件與目前市場上最優的矽基MOSFET的比較。可以看到,氮化鎵器件在具有較低的通態電阻下,同時兼具更低的驅動電荷Qg、漏柵極電荷Qgd和輸出能量Eoss,使得高頻率高效能成爲可能。 圖二是典型的准諧振(QR)反激電路拓撲,由於它的低成本和較高可靠性,多用於充電器電路中。在該電路中爲了提高充電器的功率密度,一個直接的方法就是增大開關頻率來降低變壓器等元件的尺寸。然而提高開關頻率以後必然帶來額外的器件開關損耗和溫升。QR反激電路主要有兩個與開關頻率相關的損耗,頻率越高相應損耗越大: 在功率器件關斷瞬間原邊電流達到峰值電流,功率器件在硬關斷過程關閉,存在電壓電流交曡的關斷損耗。它可以由器件驅動電荷Qg和漏柵極電荷Qgd參數來評價。 在器件開通時刻,由於此時電流基本為零,因此不存在開通電壓電流交曡開關損耗,但QR反激電路在高壓交流電壓輸入(230Vac)條件下器件開通瞬間漏源極電壓並不為零,所以存在由於内部寄生電容放電產生的放電損耗。它可以由寄生電容對應的輸出能量Eoss參數來評價。 評價一個功率器件特性重要指標是品質因數(Figure Of Merit,FOM),它綜合評估器件的通態和開關特性,越小的FOM代表越優的器件性能。其中 Input FOM表明了器件在同等通態電阻下器件的開關過程中電壓電流交曡損耗,它是硬開關電路評估器件的最重要指標,例如QR反激電路的關斷損耗就可以用這個指標來比較。如圖三所示,在相近通態電阻(50-60毫歐)條件下,氮化鎵器件的漏柵極電荷Qgd僅爲矽基器件的6%,導致開關過程中氮化鎵器件電壓電流交曡損耗遠小於矽基器件,約爲矽基器件的五分之一。 QR Flyback FOM表明QR反激電路中在同等通態電阻下器件在200V下寄生電容產生的放電損耗,這裏電壓條件為200V是因爲,當輸入交流電壓為高壓230Vac條件下,QR反激電路功率器件漏源極電壓約爲200V條件下開通,將在此條件下產生寄生電容影響的開通損耗。圖四可以看到,在相近的通態電阻下,氮化鎵器件的Eoss僅爲矽基器件的60%左右,導致開通電容放電損耗遠低於業界最好的矽基器件。 因此總結表一和上面分析:氮化鎵器件在各方面器件性能上均優於矽基MOSFET器件,適用於高頻化高效應用,實現最佳性能。   3. 氮化鎵產品及可靠性 作爲一位研發工程師,在研發充電器產品時主要關注以下三個方面:第一是產品的可靠性,代表器件在產品壽命中具有高的可靠性和低的失效率,滿足產品的設計壽命;第二是低成本,除了器件自身成本以外,還需要考慮整體的BOM成本和生產成本;第三是產品能夠快速推向市場,縮短產品設計周期。 氮化镓系统 (GaN Systems)一直致力於優秀氮化鎵功率器件的研發和生產。目前已經擁有業界最全產品覆蓋範圍,最高工作電流和最優封裝的氮化鎵產品綫。其中針對快充市場推出了650V 5×6毫米 PDFN封裝的氮化鎵器件,通態電阻從150毫歐(GS-065-011-1-L)到450毫歐(GS-065-004-1-L),它可以用於30W到300W的充電器產品中。 在可靠性方面,氮化镓系统 (GaN Systems)嚴格按照超過JEDEC標準的產品認證流程,表二給出了部分測試高於JEDEC標準的測試項目和延長測試時間的倍數,同時基於氮化鎵器件自身特性還增加了多個額外可靠性測試項目,比如高溫開關動態壽命測試。這樣可以保證氮化鎵產品的可靠性和長工作壽命。圖五比較了氮化镓系统 (GaN Systems)氮化鎵器件與同類氮化鎵器件在准諧振(QR)和有源箝位反激(ACF)兩種電路的失效率,該失效率數據是居於業界通用方法,在實測高溫高壓數據下通過韋伯圖(Weibull Plot)得到相關加速因子,進而預測出在實際產品工作壽命下的失效率。可以得出結論     4. 帶EZDrive電平轉換電路的氮化鎵驅動方案 對於增强型氮化鎵器件驅動,開通推薦電壓為6V左右,關斷推薦電壓可以為0V到-10V,而傳統的帶驅動的充電器控制IC輸出驅動電壓一般為12V,因此爲了和控制IC的驅動電壓配合,需要進行驅動電壓的電平轉換。爲此氮化镓系统 (GaN Systems)提出了低成本的EZDrive電平轉換電路,如下圖所示,通過簡單的四個小分離元件(RUD, CUD, ZDUD1和ZDUD2)實現了驅動電壓的轉換,采用該電路后氮化鎵器件驅動實測波形VGS沒有任何過冲和干擾振蕩。 采用EZDrive電平轉換電路配合氮化鎵器件驅動的另一個優勢在於其驅動電阻Ron和Roff外置,如圖七所示,可以通過驅動電阻來控制漏源極驅動電壓斜率dv/dt進而優化EMI設計。和其他單晶片集成驅動GaN方案相比,氮化鎵器件加上EZDrive電平轉換電路具有更強的靈活性,並充分利用控制IC内部集成的驅動實現了低成本驅動氮化鎵器件,同時由於驅動電阻外置,可以控制開關dv/dt斜率進而優化電磁干擾(EMI)設計。…